		L
--	--	---

(Pages : 4)

D - 2850

Reg. No. :

Name :

Fifth Semester B.B.A. Degree Examination, December 2017 Career Related First Degree Programme under CBCSS CORE COURSE: BM 1541: QUANTITATIVE TECHNIQUE FOR MANAGEMENT (2015 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

- I. Answer all questions in one or two sentences. Each question carries 1 mark.
 - 1) What is operations research?
 - 2) What is a linear programming problem?
 - 3) What are slack variables?
 - Name the mathematician who developed the simplex method for solving a linear programming problem.
 - 5) What are assignment problems?
 - 6) In linear programming problem:

Maximize
$$Z = 60x_1 + 40x_2$$

Subject to
$$2x_1 + x_2 \le 60$$

$$X_1 \leq 25$$

$$x_2 \leq 35$$

$$x_1, x_2 \ge 0.$$

Convert the constraints into equalities.

- 7) State any two limitations of graphical method of solving a LPP.
- 8) What is event in a network?
- 9) What is group replacement policy?
- 10) What is initial basic feasible solution?

(10×1=10 Marks)

SECTION - B

- II. Answer any eight questions not exceeding one paragraph. Each question carries 2 marks.
 - 11) What is dummy activity?
 - 12) What is unbounded solution?
 - 13) Write a note on Vogel's approximation method.
 - 14) What is critical path method?
 - 15) Explain Hungarian algorithm.
 - 16) What are unbalanced transportation problems?
 - 17) What are travelling salesman problems?
 - 18) What is total float?
 - 19) Discuss the standard form of LPP.
 - 20) What do you mean by crashing of project network?
 - 21) A project is expected to take 15 months along the critical path having a standard deviation of 3 months. What is the probability of completing the project on the due date, if the due date fixed is (a) 18 months and (b) 12 months? (Hint: For Z = 1, Table area = 0.3413)
- 22) What is sensitivity analysis?

(8×2=16 Marks

SECTION - C

- II. Answer any 6 questions not exceeding one page. Each question carries 4 marks.
 - 23) Discuss the limitations of operations research:
 - 24) What are the time estimates in the PERT calculations?
 - 25) What are the uses of Network techniques for management?
 - 26) A home resourceful decorator manufacturer two types of Lamps say A and B. Both lamps go through two technicians first a cutter and second a finisher. Lamp A requires 2 hours of the cutter's time and 1 hour of the finisher's time; Lamp B requires 1 hour of cutter's and 2 hours of finisher's time. The cutter has 104 hours and finisher has 76 hours of available time each month. Profit on the lamp A is Rs. 6.00 and on one B lamp is Rs. 11.00. Formulate a mathematical model.

27) Use the graphical method, solve the following LPP problem :

Maximize
$$Z = 3x_1 + 5x_2$$

Subject to $x_1 + 2x_2 \le 2000$
 $x_1 + x_2 \le 1500$
 $x_2 \le 600$
 $x_1, x_2 \ge 0$

- 28) What are the features of operations research?
- 29) Discuss about constraints in LPP.
- 30) Find the initial feasible solution to the following transportation problem by lowest cost entry method :

	W1	W2	W3	Available
F1	2 ·	7	4	5
F2	3	3 .	1	8
F3	5	4	7	7
F4	1	6	2 .	14
Required	7	9	18	

31) Draw the network for the project whose activities with their relationships are given below:

A, C, D can start simultaneously; E > B, C; F, G > D; H, I > E, F; J > I, G; K > H, B > A. (6×4=24 Marks)

SECTION - D

- IV. Answer any 2 questions not exceeding four pages. Each question carries 15 marks.
 - 32) What are the phases of operations research?
 - 33) Explain the application of operations research.

34) A project schedule has the following time schedule:

Activity	1-2	1-3	1-4	2-5	3 – 6	3-7	4 – 6	5 – 8	6-9	7 – 8	8-9
Duration (in months)	2	2	1	4	8	5	3	1	5	4	3

i) Construct the network diagram.

ii) Identify the critical path and find the project completion time.

35) Solve the following transportation problem:

	•		Т	0			
		W1	W2	W3	W4	W5	Available
	F1	3	4	6	8	9 .	20
F	, F2	2	10	1	5 .	8	30
From	F3	7	11	20	40	3	15
	F4	. 2	1	9	14	16	13
	Required	40	6	8	18	6	

(2×15=30

(Pages : 4) F - 2728 eg. No. :

Fifth Semester B.B.A. Degree Examination, December 2018 Career Related First Degree Programme under CBCSS Core Course : BM 1541 : QUANTITATIVE TECHNIQUE FOR **MANAGEMENT** (2015 Admission Onwards)

ne: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions in one or two sentences. Each question carries 1 mark.

- What is OR model?
- 2) What is descriptive model?
- 3) What is non-degenerate basic feasible solution?
- 4) Why is Vogel's approximation method preferred over the other methods?
- 5) What are surplus variables?
- 6) Write any two uses of transportation techniques.
- 7) What is corner point?
- 8) What is feasible solution?
- 9) What is replacement theory?
- 10) What is Minimum Ratio?

(10×1=10 Marks)

SECTION - B

Answer any eight questions not exceeding one paragraph. Each question carries 2 marks.

- 11) What is pessimistic time estimates?
- What is infeasibility? 12)
- Write the mathematical formulation of LPP.
- What are the limitations of linear programming? 14)
- How is Operations Research useful in taking management decisions? P.T.O. 15)

F - 2728

- 16) What are unbalanced assignment problems ?
- 17) What are PERT?
- 18) What is free float?
- Briefly explain degeneracy in transportation problem.
- 20) Write the equations to calculate the expected time for an activity, variance of an activity in PERT calculations.
- Explain replacement of items that deteriorate with time.
- 22) What are the rules for constructing network diagram?

(8×2=16 Marks)

SECTION - C

- III. Answer any 6 questions not exceeding one page. Each question carries 4 marks.
 - Discuss the difference between transportation problem and assignment problem.
 - 24) Discuss objective function in LPP.
 - 25) Explain the classification of OR Model on the basis of structure.
 - A manufacturer produces two types of models M1 and M2. Each model of the type M1 requires 4 hours of grinding and 2 hours of polishing; whereas each model of the type M2 requires 2 hours of grinding and 5 hours of polishing. The manufacturers have 2 grinders and 3 polishers. Each grinder works 40 hours a week and each polisher works for 60 hours a week. Profit on M1 model is Rs. 3.00 and on model M2 is Rs. 4.00. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models, so that he may make the maximum profit in a week?
 - 27) Solve the following LPP by graphical method:

Maximize
$$Z = 2x_1 + 3x_2$$

Subject to

$$x_1 + x_2 \le 30$$

 $x_2 \ge 3$
 $0 \le x_2 \le 12$
 $x_1 - x_2 \ge 0$
 $0 \le x_1 \le 20$
 $x_1, x_2 \ge 0$.

- 28) OR is the art of finding bad answers where worse exists. Comment.
- 29) Assuming that the expected time are normally distributed, find the critical path and project duration of

	Days				
Activity	То	tm	Тр		
1 – 2	2	5	14		
1 – 3	9	12	15		
2 – 4	5	14	17		
3 – 4	2	5	8		
3-5	8	17	20		
4-5	6	9	12		

- 30) Discuss the terms : Present worth factor and discount rate.
- 31) Differentiate PERT and CPM.

(6×4=24 Marks)

SECTION - D

- IV. Answer any 2 questions not exceeding four pages. Each question carries 15 marks.
 - 32) Discuss significance and scope of operation research.
 - 33) Solve the Linear Programming Problem.

Maximize: $Z = 7x_1 + 5x_2$

Subject to

$$x_1 + 2x_2 \le 6$$

$$4x_1 + 3x_2 \le 12$$

$$x_1, x_2 \geq 0.$$

34) Given below is the time (days) required when a particular programme is assigned to a particular programmer.

Programmers

	A	В	C	D
% 1	12	10	8	9
Programme	8	9,	11	7
g 3	- 11	14	12	10
ŭ 4	9	9	8	9

Assign the programmers to the programmes in such a way that the total computing time is least.

35) The following table lists the jobs of a network along their time estimates.

Lab	Duration (days)					
Job	Optimistic	Most Likely	Pessimistic			
1-2	3	6	15			
1-6	2	5	14			
2-3	6	12	30			
2 – 4	2	5	8			
3-5	5	11	17			
4 – 5	3	6	15			
6-7	3	9	27			
5-8	1	4	7			
7 – 8	4	19	28			

- a) Draw the project network.
- b) Calculate the length and variance of the critical path.
- c) What is the approximate probability that the jobs on the critical path will be completed in 41 days?

 (2×15=30 Marks)

Reg. N	10.	:	•••••	
Name	:			

Fifth Semester B.B.A. Degree Examination, December 2019 Career Related First Degree Programme Under CBCSS

Core Course : BM 1541 – Quantitative Techniques For Management (2017 Admission)

Time: 3 Hours

Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 marks

- What you mean by the term 'Random Experiment'?
- 2. Define the term Linear Programming.
- 3. Define the term loop in transportation problem.
- 4. What is Goal Programming?
- 5. Define the term 'Float'.
- 6. What are mutually exclusive events?
- 7. What is Binomial Distribution?
- 8. What are equally likely events?
- 9. Explain PERT.
- 10. Define surplus variables.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any Eight questions. Each question carries 2 marks

- 11. Explain the characteristics of Poisson distribution.
- 12. What is optimization problem?
- 13. What do you mean by Slack?
- Explain balanced Transportation Problem.
- Define feasible solution and convex region.
- 16. What are the features of normal distribution?
- 17. Explain the uses of network analysis?
- 18. What is degeneracy in transportation problem?
- Write a short note on Markov analysis.
- Explain Central limit theorem.
- 21. What are the assumption of transportation model?
- 22. Mention any two limitations of critical path.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any Six questions. Each carries 4 marks.

- 23. What are the applications of LPP?
- 24. State and prove addition theorem of probability.
- 25. What are the network techniques?
- 26. Explain the North West Corner rule of transportation problem.
- 27. Explain decision theories.
- 28. A typist typed 200 pages with 200 mistakes randomly distributed. What is the probability that a page contains at least two mistakes?
- 29. Construct a network diagram.

Activity	1-2	1-3	. 2-3	2-5	3-4	3-6	4-5	4-6	5-6	6-7
Duration	15	15	3	5	8	12	1	14	3	14

- 30. Explain the term:
 - (a) Optimistic time,
 - (b) Pessimistic time
 - (c) Most likely time
 - (d) Expected time
- Three coins are tossed 3000 times, Find the frequencies of the distribution of heads and tails and tabulate the results. Also calculate and Standard deviations.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each carries 15 marks

32. The following data relates to a manufacturing unit. They detected few items of with some defects in 400 shifts. Fit Poisson distribution to the data

No. of faults	. 0	1	2	3	4
No. of shifts	138	161	69	27	5

33. Consider the following:

Activity	Time			
0-1	2			
1-2	8			
1-3	10			
2-4	6			
2-5	3			
3-4	3			
3-6	7			
4-7	5			
5-7	2			
6-7	8			

- (a) Construct the network diagram.
- (b) Find the Critical Path.

- 34. Explain briefly with example North – West corner rule for transportation problem?
- 35. Solve the following linear programming problem graphically.

Minimize Z=3x+2y

$$x+y \ge 8$$

Subject to the constraints:

$$3x + 5y \le 15$$

$$x \ge 0, y \ge 0$$

 $(2 \times 15 = 30 \text{ Marks})$